



# **RAVEN:** <u>Reinforcement Learning for Generating Verifiable</u> **Run-time Requirement Enforcers for MPSoCs**

\*Khalil Esper, \*Jan Spieck, Pierre-Louis Sixdenier, Stefan Wildermann, Jürgen Teich Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2023)





- 02 Reinforcement Learning for Generating Verifiable Run-time Requirement Enforcers
- **03** Verification Results
- 04 Conclusion

### **Motivation**

- Many core architecture
- Application via actor graph
- A set of non-functional requirements  $\varphi$  on execution properties o
  - E.g., latency, energy or throughput requirements
  - specified using intervals



Latency  $o_L$ 

 $UB_{o_I}$ 

 $LB_{o_L}$ 





Exeuction k

### Runtime requirement enforcement (RRE)





Runtime requirement enforcement (RRE) using enforcement FSMs

- Enforcement FSM *F* determines a configuration c(k + 1) for the next execution k + 1
  - Based on the kth requirement response  $\beta(k)$  of the system
- Environment FSM describes the environment input variation
- Compare enforcer strategies based on verification goals VG:
  - defined over requirements  $\varphi$ 
    - Strict: e.g.,  $AG(\varphi)$ :  $\varphi$  should always hold
    - Loose: e.g.,  $S_{=?}[\neg \varphi]$ : the steady-state probability of violating  $\varphi$





 $\overline{\varphi_L}$ 

 $\overline{\varphi_L}$ 



 $\overline{\varphi}_L$ 

 $\overline{\varphi_L}$ 

**Reinforcement Learning** 



Reinforcement Learning (RL) is a Machine Learning paradigm

- Goal: maximize a cumulative reward by learning actions
- The System-under-control resides in a state  $v \in \Upsilon$
- Based on which the agent then selects an action  $a \in A$  (according to its internal policy  $\pi$ )
- Transitions to successor state:  $v' \in \Upsilon$
- Receives a reward signal  $\xi: \Upsilon \times A \to \mathbb{R}$



Q-Learning

| How good is a | state-action | pair? |
|---------------|--------------|-------|
|---------------|--------------|-------|

- An action-value function  $Q^{\pi}: \Upsilon \times A \to \mathbb{R}$
- Predicts cumulated reward on the long run

### Q-Learning:

- Learns action-value function, i.e., Q-function
- Until terminal state or maximum iterations
- Q-table stores all the values of Q-function





| Q-table       |       |  |  |  |  |  |
|---------------|-------|--|--|--|--|--|
| State-action  | Value |  |  |  |  |  |
| $v_0$ , $a_0$ | 1     |  |  |  |  |  |
| $v_0$ , $a_1$ | 2     |  |  |  |  |  |
| $v_1$ , $a_0$ | -1    |  |  |  |  |  |
|               |       |  |  |  |  |  |

Goal: learn an enforcement strategy that optimizes a given set of verification goals *VG* 

– An action a(k): a configuration  $c(k) \in C$ 

Training phase

- A state  $v \in \Upsilon = B \times C$ : a configuration  $c \in C$ and a requirement response  $\beta \in B$ 







# **Reinforcement Learning for Generating Verifiable RRE**



Training phase

A reward function  $\xi_{\eta}(a(k)) = \eta \cdot \xi_{sur}(k) + (1 - \eta) \cdot \xi_{ver}(k)$ 

- Feedback about the requirements satisfaction
- A weighted sum of:
- 1. A <u>verification reward</u>  $\xi_{ver}(k)$ : from the model checker after transforming the enforcement agent into an enforcement FSM every  $n_{update}$  iterations
- 2. And a surrogate reward  $\xi_{sur}(k)$ : estimation of verification goals at each k based on the processed input history



# **Reinforcement Learning for Generating Verifiable RRE**



Transformation

How to transform the enforcement agent (i.e., the Q-table) into an enforcer FSM?

- One unique enforcement state per configuration  $\zeta: C \leftrightarrow Z$
- Best action per state  $\varrho: \Upsilon \to A$  (for Q-learning:  $\varrho(v) = \operatorname{argmax}_{a \in A} Q(v, a)$ )

### Example:

Two configurations  $C = \{c_0, c_1\}$  and one verification goal  $VG_L \coloneqq S_{=?}[\varphi_L]$  based on a latency requirement  $\varphi_L$ 

|                                     | Q-Table     |             |                       | Transformation                |                       |               |                                                      | Enforcer FSM  |                                                            |
|-------------------------------------|-------------|-------------|-----------------------|-------------------------------|-----------------------|---------------|------------------------------------------------------|---------------|------------------------------------------------------------|
| States $\Upsilon$                   | Q-Values    | Q(v,a)      |                       | States $\Upsilon$             | Best action           |               | Trans. Relation $\delta$                             |               | $\overline{\varphi_L}/c_0$                                 |
| $v = (\beta, c)$                    | $a_0 = c_0$ | $a_1 = c_1$ |                       | υ                             | $\varrho(v)$          |               | $(\beta,\zeta(c),\zeta(a))$                          |               |                                                            |
| $v_0 = (\overline{\varphi_L}, c_0)$ | 0.71        | 0.34        | <i>ρ</i> ( <i>v</i> ) | $(\overline{\varphi_L}, c_0)$ | $a_0$                 | ζ(c)          | $(\overline{\varphi_L}, z_0, z_0)$                   |               |                                                            |
| $v_1 = (\overline{\varphi_L}, c_1)$ | 0.56        | 0.21        | $\Rightarrow$         | $(\overline{\varphi_L}, c_1)$ | $a_0$                 | $\Rightarrow$ | $(\overline{\varphi_L}, \mathbf{Z_1}, \mathbf{Z_0})$ | $\Rightarrow$ | $z_0$ $z_1$                                                |
| $v_2 = (\varphi_L, c_0)$            | 0.62        | 0.99        |                       | $(\varphi_L, c_0)$            | <i>a</i> <sub>1</sub> |               | $(\varphi_L, \mathbf{Z_0}, \mathbf{Z_1})$            |               | $\mathbf{V} \mathbf{\nabla} \mathbf{V}$                    |
| $v_3 = (\varphi_L, c_1)$            | 0.29        | 0.35        |                       | $(\varphi_L, c_1)$            | <i>a</i> <sub>1</sub> |               | $(\varphi_L, \mathbf{z_1}, \mathbf{z_1})$            |               | $\overline{\varphi_L}/c_0 \ \varphi_L/c_1 \ \varphi_L/c_1$ |

FAU – HSCD | Esper et al. | RAVEN: Reinforcement Learning for Generating Verifiable RREs

# Verification Results

Use case



- SIFT algorithm via actor graph
- Input *i* is the number of features of current image i(k)
- Latency  $o_L(k)$  of SIFT Description Actor SD is input-dependent

Image

Source

Grav Scale

- Latency and power requirements on SD actor
  - Upper bounds:  $UB_L = 40 \text{ ms}, UB_P = 1.2 \text{ W}$
- Configuration space of a cardinality  $|C| = |n| \cdot |m| = 4 \cdot 20 = 80$









Verification results for Race-To-Idle (RTI),  $F_1$  (1-step enforcer FSM),  $F_2$  (8-step enforcer FSM), and  $F_{rl_0}, F_{rl_1}, F_{rl_2}$  (synthesized RL-based enforcer FSMs using our approach) based on a latency upper bound (deadline)  $UB_L = 40$  ms, and a power upper bound  $UB_P = 1.2$  W

| Loose enforcement     |     |                                                    |                    |                         |                          |                                    |                       |                                    |  |  |
|-----------------------|-----|----------------------------------------------------|--------------------|-------------------------|--------------------------|------------------------------------|-----------------------|------------------------------------|--|--|
| Requirement $\varphi$ |     | Late                                               | ency $\varphi_L$   |                         | Power $\varphi_P$        |                                    |                       |                                    |  |  |
| VG                    |     | $\pmb{P}_{=?}[\pmb{G}^{\leq 3}\neg \pmb{arphi}_L]$ |                    |                         |                          | $P_{=?}[G^{\leq 3}\neg \varphi_P]$ |                       |                                    |  |  |
| Enforcer              | RTI | F <sub>1</sub>                                     | F <sub>2</sub>     | <i>F</i> <sub>rl0</sub> | RTI                      | F <sub>1</sub>                     | <b>F</b> <sub>2</sub> | <i>F</i> <sub>rl0</sub>            |  |  |
| Verification result   | 0   | 0.427                                              | 0.041              | 0                       | 1                        | 0.256                              | 0.389                 | 0                                  |  |  |
| VG                    |     | <b>S</b> =?                                        | $[\neg \varphi_L]$ |                         | $S_{=?}[\neg \varphi_P]$ |                                    |                       |                                    |  |  |
| Enforcer              | RTI | F <sub>1</sub>                                     | $F_2$              | F <sub>rl1</sub>        | RTI                      | F <sub>1</sub>                     | $F_2$                 | <i>F</i> <sub>rl<sub>1</sub></sub> |  |  |
| Verification result   | 0   | 0.5                                                | 0.121              | 0.173                   | 1                        | 0.445                              | 0.591                 | 0.435                              |  |  |

| Strict enforcement     |                     |                |                       |                |  |  |  |
|------------------------|---------------------|----------------|-----------------------|----------------|--|--|--|
| Requirement $\varphi$  | Latency $\varphi_L$ |                |                       |                |  |  |  |
| VG                     | $AG(\varphi_L)$     |                |                       |                |  |  |  |
| Enforcer               | RTI                 | F <sub>1</sub> | <b>F</b> <sub>2</sub> | $F_{\rm rl_2}$ |  |  |  |
| Verification<br>result | true                | false          | false                 | true           |  |  |  |

### Conclusion



- We presented a technique using RL for automatically generating verifiable feedback-based RRE enforcers
- First, the enforcement agent learns an enforcement strategy based on a representative input sequence at design time
- Then, the learned enforcement strategy is transformed into a verifiable enforcement FSM that can handle unseen input data at run-time
- We apply the approach to generate controllers that increase the probability of satisfying a given set of verification goals compared to related work, as can be verified by model checkers







# Thanks!