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Motivation
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Introduction
Runtime requirement enforcement (RRE)
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Runtime requirement enforcement (RRE) using enforcement FSMs

L oL oL oL

Enforcement FSM F determines a configuration c(k + 1) oL C<1=1> <12 ) (<1® 420> |
for the next execution k + 1 2 YL 7 YL 7 YL oL
Based on the kth requirement response (k) of the system
Environment FSM describes the environment input variation
Enforcement |
Compare enforcer strategies based on FSM F
verification goals VG: Requirement response 5 (k)
defined over requirements ¢ Requirefmentt_ response| c(k + 1)
unction
Strict: e.g., AG(p): ¢ should always hold MPSoC
System response r (k) Core
Loose: e.g., S—,[—¢]: the steady-state @@
probability of violating ¢ _ ’_
Environment FSM Core

R © O
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Reinforcement Learning

Reinforcement Learning (RL) is a Machine Learning paradigm

Goal: maximize a cumulative reward by learning actions

The System-under-control resides ina state v ey Agent

Based on which the agent then selects an
action a € A (according to its internal policy ) Next state v’ Reward ¢ Action a

Transitions to successor state;: v’ €Y

System-
Receives a reward signhal &: Y XA - R under-control

FAU — HSCD | Esper et al. | RAVEN: Reinforcement Learning for Generating Verifiable RREs 25. Januar 2023 6



Introduction
Q-Learning

How good is a state-action pair?
— An action-value function Q™: Y X A » R

— Predicts cumulated reward on the long run

Q-Learning:
— Learns action-value function, i.e., Q-function
— Until terminal state or maximum iterations

— Q-table stores all the values of Q-function

esign
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State-action Value

Vg, Ao 1

Vo, A4 2

V1, Qo -1
Choose an Calculate Update
action reward Q-table
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Reinforcement Learning for Generating Verifiable RRE esign F/A\\U

Training phase

Goal: learn an enforcement strategy that optimizes
a given set of verification goals VG

. . ] RL Environment action
An action a(k): a configuration c(k) € C a(k)
_ _ Ce 0 ————r Enforcement
Astate v €Y = B X C: a configuration c € C config Agent
and a requirement response § € B c(k) state 1 else
— 1 vk
response . o .
. t, . r (k) | Reward if k % Nypdate = 0

. N " Function reward &(k)
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Transformation

input verification Goals
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FSM E model E Checker model F FSM F
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Training phase

Areward function &, (a(k)) =1 . & (k) + (1 — 1) . &ger (k)

Feedback about the requirements satisfaction

RL Environment action
. a(k)
A weighted sum of: COaq ———m Enforcement
o config N Agent
A verification reward &,..(k): from the model c(k) ot ? else
checker after transforming the enforcement Z?k(; ‘
agent into an enforcement FSM every response .
. . ty |fk %nu date — 0
r(k) p
Nupdate It€rations ty ~ Reward
. N " Function  reward &(k)
ty 4
And a _surr_oqate reward &,,.(k): estimation 4 -
of verification goals at each k based on
the processed input history _ o
input verification Goals
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Environment ~ Model Enforcement
FSM E model E Checker . 4ol F FSM F
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Reinforcement Learning for Generating Verifiable RRE

Transformation

How to transform the enforcement agent (i.e., the Q-table) into an enforcer FSM?

One unique enforcement state per configuration {:C & Z

Best action per state p: Y — A (for Q-learning: o(v) = argmax c4 Q(v, a))

Example:

@esion [EAU

Two configurations € = {c,, c;} and one verification goal VG; = S_,[¢;] based on a latency requirement ¢;

Q-Table
States Y Q-Values Q (v, a)

v =(p,c) Ay = Co a; = ¢
Vo = (@1, cp) 0.71 0.34
v1 = (@, c1) 0.56 0.21
v, = (@1, Co) 0.62 0.99
vz = (¢, ¢1) 0.29 0.35

e(v)
=
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Transformation
States Y | Best action Trans. Relation &
v o(v) (B,¢(c), ¢(a))
(@1, o) Qo 7¢c) (@ z0,2)
(@1, ¢1) Qo = (P11, 20)
(9L, o) a, (@Lr 20, 1)
(@1 c1) a, (pL 71, 21)

Enforcer FSM

PrL/co PL/cy PL/cy
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Verification Results
Use case

Object detection application

Requirement response f

esign |

System response r
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Verification Results
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Verification results for Race-To-Idle (RTI), F; (1-step enforcer FSM), F, (8-step enforcer FSM), and
Fn,, Fr,, Fr, (synthesized RL-based enforcer FSMs using our approach) based on a latency upper bound
(deadline) UB; = 40 ms, and a power upper bound UBp = 1.2 W

Loose enforcement

Requirement ¢ Latency ¢,
Strict enforcement
VG P_,[G=-¢y]
Requirement ¢ Latency ¢
Enforcer RTI  F, F, Fy, RTI  F4q Fr Fy,
o VG AG(py)
venfieation 0 0427 0041 O 1 0256 038 0O
Enforcer RTI F, F, Fy,
Verrl(il;l?ltson true @ false false | true
Enforcer RTI F, F, Fy, RTI  Fy4 F, Fy,
Verification
0 0.5 0.121 0.173 1 0.445 0.591 0.435

result
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Conclusion @M FAU

We presented a technique using RL for automatically generating verifiable feedback-based RRE
enforcers

First, the enforcement agent learns an enforcement strategy based on a representative input sequence
at design time

Then, the learned enforcement strategy is transformed into a verifiable enforcement FSM that can
handle unseen input data at run-time

We apply the approach to generate controllers that increase the probability of satisfying a given set of
verification goals compared to related work, as can be verified by model checkers
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