
RAVEN: Reinforcement Learning for Generating Verifiable

Run-time Requirement Enforcers for MPSoCs
*Khalil Esper, *Jan Spieck, Pierre-Louis Sixdenier, Stefan Wildermann, Jürgen Teich

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2023)

25. Januar 2023FAU – HSCD | Esper et al. | RAVEN: Reinforcement Learning for Generating Verifiable RREs 2

Reinforcement Learning for Generating Verifiable Run-time Requirement Enforcers02

Verification Results03

Conclusion04

Outline

Introduction01

Memory

Core Core

Core Mem

Memory

I/O

NoC

Router

NoC

Router

NoC

Router

NoC

Router

Core Core

25. Januar 2023FAU – HSCD | Esper et al. | RAVEN: Reinforcement Learning for Generating Verifiable RREs 3

− Many core architecture

− Application via actor graph

− A set of non-functional requirements 𝜑 on execution properties 𝑜

− E.g., latency, energy or throughput requirements

− specified using intervals

Introduction
Motivation

Exeuction 𝑘

Latency 𝑜𝐿

𝐿𝐵𝑜𝐿

𝑈𝐵𝑜𝐿

Memory

Core Core

Core Mem

Memory

I/O

NoC

Router

NoC

Router

NoC

Router

NoC

Router

Core Core

Configuration

𝑐(𝑘 + 1)

25. Januar 2023FAU – HSCD | Esper et al. | RAVEN: Reinforcement Learning for Generating Verifiable RREs 4

− Uncertainty in the environment

− E.g., variation in input 𝑖(𝑘) ∈ 𝐼

− Run-time Requirement Enforcement (RRE)

− via configurations 𝑐 ∈ 𝐶:

− 𝑛: number of cores

−𝑚: DVFS level

− Goal: choose < 𝑛,𝑚 > at each 𝑘 such

that the requirements 𝜑 are satisfied

Introduction

Non-enforced latency

variation
RRE of

latency

Exeuction 𝑘

Latency 𝑜𝐿

𝐿𝐵𝑜𝐿

𝑈𝐵𝑜𝐿

Input

variation

Exeuction 𝑘

Input 𝑖

Runtime requirement enforcement (RRE)

25. Januar 2023FAU – HSCD | Esper et al. | RAVEN: Reinforcement Learning for Generating Verifiable RREs 5

− Enforcement FSM 𝐹 determines a configuration 𝑐 𝑘 + 1

for the next execution 𝑘 + 1

− Based on the 𝑘th requirement response 𝛽 𝑘 of the system

− Environment FSM describes the environment input variation

− Compare enforcer strategies based on

verification goals 𝑉𝐺:

− defined over requirements 𝜑

− Strict: e.g., 𝐴𝐺 𝜑 : 𝜑 should always hold

− Loose: e.g., 𝑆=? ¬𝜑 : the steady-state

probability of violating 𝜑

Introduction
Runtime requirement enforcement (RRE) using enforcement FSMs

25. Januar 2023FAU – HSCD | Esper et al. | RAVEN: Reinforcement Learning for Generating Verifiable RREs 6

Reinforcement Learning (RL) is a Machine Learning paradigm

− Goal: maximize a cumulative reward by learning actions

− The System-under-control resides in a state 𝑣 ∈ Υ

− Based on which the agent then selects an

action 𝑎 ∈ 𝐴 (according to its internal policy 𝜋)

− Transitions to successor state: 𝑣′ ∈ Υ

− Receives a reward signal 𝜉: Υ × 𝐴 → ℝ

Introduction
Reinforcement Learning

Agent

System-

under-control

Action 𝑎Next state 𝑣′ Reward 𝜉

25. Januar 2023FAU – HSCD | Esper et al. | RAVEN: Reinforcement Learning for Generating Verifiable RREs 7

How good is a state-action pair?

− An action-value function 𝑄𝜋: Υ × 𝐴 → ℝ

− Predicts cumulated reward on the long run

Q-Learning:

− Learns action-value function, i.e., Q-function

− Until terminal state or maximum iterations

− Q-table stores all the values of Q-function

Introduction
Q-Learning

Choose an

action

Calculate

reward

Update

Q-table

Q-table

State-action Value

𝑣0, 𝑎0 1

𝑣0, 𝑎1 2

𝑣1, 𝑎0 -1

… …

25. Januar 2023FAU – HSCD | Esper et al. | RAVEN: Reinforcement Learning for Generating Verifiable RREs 8

Goal: learn an enforcement strategy that optimizes

a given set of verification goals 𝑉𝐺

− An action 𝑎(𝑘): a configuration 𝑐 𝑘 ∈ 𝐶

− A state 𝜐 ∈ Υ = 𝐵 × 𝐶: a configuration 𝑐 ∈ 𝐶
and a requirement response 𝛽 ∈ 𝐵

Reinforcement Learning for Generating Verifiable RRE
Training phase

25. Januar 2023FAU – HSCD | Esper et al. | RAVEN: Reinforcement Learning for Generating Verifiable RREs 9

A reward function 𝜉𝜂 𝑎 𝑘 = 𝜂 . 𝜉sur 𝑘 + 1 − 𝜂 . 𝜉ver 𝑘

− Feedback about the requirements satisfaction

− A weighted sum of:

1. A verification reward 𝜉ver 𝑘 : from the model

checker after transforming the enforcement

agent into an enforcement FSM every

𝑛update iterations

2. And a surrogate reward 𝜉sur 𝑘 : estimation

of verification goals at each 𝑘 based on

the processed input history

Reinforcement Learning for Generating Verifiable RRE
Training phase

25. Januar 2023FAU – HSCD | Esper et al. | RAVEN: Reinforcement Learning for Generating Verifiable RREs 10

How to transform the enforcement agent (i.e., the Q-table) into an enforcer FSM?

- One unique enforcement state per configuration 𝜁: 𝐶 ↔ 𝑍

- Best action per state 𝜚: Υ → 𝐴 (for Q-learning: 𝜚 𝑣 = argmax𝑎∈𝐴 𝑄(𝑣, 𝑎))

Example:

Two configurations 𝐶 = {c0, c1} and one verification goal 𝑉𝐺𝐿 ≔ 𝑆=?[𝜑𝐿] based on a latency requirement 𝜑𝐿

Reinforcement Learning for Generating Verifiable RRE
Transformation

/𝑐0 /𝑐1 /𝑐1

/𝑐0

Memory

Core Core

Core Mem

Memory

I/O

NoC

Router

NoC

Router

NoC

Router

NoC

Router

Core Core

𝑐(𝑘 + 1)

Requirement response 𝛽
𝜙

System response 𝑟

25. Januar 2023FAU – HSCD | Esper et al. | RAVEN: Reinforcement Learning for Generating Verifiable RREs 11

− Object detection application

− SIFT algorithm via actor graph

− Input 𝑖 is the number of features of current

image 𝑖(𝑘)

− Latency 𝑜𝐿(𝑘) of SIFT Description Actor SD is

input-dependent

− Latency and power requirements on SD actor

− Upper bounds: 𝑈𝐵𝐿 = 40 ms, 𝑈𝐵𝑃 = 1.2 W

− Configuration space of a cardinality

𝐶 = 𝑛 ⋅ 𝑚 = 4 ⋅ 20 = 80

Verification Results
Use case

25. Januar 2023FAU – HSCD | Esper et al. | RAVEN: Reinforcement Learning for Generating Verifiable RREs 12

Loose enforcement

Requirement 𝝋 Latency 𝝋𝑳 Power 𝝋𝑷

𝑽𝑮 𝑷=?[𝑮
≤𝟑¬𝝋𝑳] 𝑷=?[𝑮

≤𝟑¬𝝋𝑷]

Enforcer RTI 𝑭𝟏 𝑭𝟐 𝑭𝐫𝐥𝟎 RTI 𝑭𝟏 𝑭𝟐 𝑭𝐫𝐥𝟎

Verification

result
0 0.427 0.041 0 1 0.256 0.389 0

𝑽𝑮 𝑺=?[￢𝝋𝑳] 𝑺=?[￢𝝋𝑷]

Enforcer RTI 𝑭𝟏 𝑭𝟐 𝑭𝐫𝐥𝟏 RTI 𝑭𝟏 𝑭𝟐 𝑭𝐫𝐥𝟏

Verification

result
0 0.5 0.121 0.173 1 0.445 0.591 0.435

Verification Results

Verification results for Race-To-Idle (RTI), 𝐹1 (1-step enforcer FSM), 𝐹2 (8-step enforcer FSM), and

𝐹rl0 , 𝐹rl1 , 𝐹rl2 (synthesized RL-based enforcer FSMs using our approach) based on a latency upper bound

(deadline) 𝑈𝐵𝐿 = 40 ms, and a power upper bound 𝑈𝐵𝑃 = 1.2 W

Strict enforcement

Requirement 𝝋 Latency 𝝋𝑳

𝑽𝑮 𝑨𝑮(𝝋𝑳)

Enforcer RTI 𝑭𝟏 𝑭𝟐 𝑭𝐫𝐥𝟐

Verification

result
true false false true

25. Januar 2023FAU – HSCD | Esper et al. | RAVEN: Reinforcement Learning for Generating Verifiable RREs 13

− We presented a technique using RL for automatically generating verifiable feedback-based RRE

enforcers

− First, the enforcement agent learns an enforcement strategy based on a representative input sequence

at design time

− Then, the learned enforcement strategy is transformed into a verifiable enforcement FSM that can

handle unseen input data at run-time

− We apply the approach to generate controllers that increase the probability of satisfying a given set of

verification goals compared to related work, as can be verified by model checkers

Conclusion

www.invasic.de

Thanks!

