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− Many core architecture

− Application via actor graph

− A set of non-functional requirements 𝜑 on execution properties 𝑜

− E.g., latency, energy or throughput requirements

− specified using intervals

Introduction
Motivation
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− Uncertainty in the environment

− E.g., variation in input 𝑖(𝑘) ∈ 𝐼

− Run-time Requirement Enforcement (RRE)

− via configurations 𝑐 ∈ 𝐶:

− 𝑛: number of cores

−𝑚: DVFS level

− Goal: choose < 𝑛,𝑚 > at each 𝑘 such 

that the requirements 𝜑 are satisfied 

Introduction
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− Enforcement FSM 𝐹 determines a configuration 𝑐 𝑘 + 1

for the next execution 𝑘 + 1

− Based on the 𝑘th requirement response 𝛽 𝑘 of the system

− Environment FSM describes the environment input variation 

− Compare enforcer strategies based on 

verification goals 𝑉𝐺: 

− defined over requirements 𝜑

− Strict: e.g., 𝐴𝐺 𝜑 : 𝜑 should always hold

− Loose: e.g., 𝑆=? ¬𝜑 : the steady-state 

probability of violating 𝜑

Introduction
Runtime requirement enforcement (RRE) using enforcement FSMs
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Reinforcement Learning (RL) is a Machine Learning paradigm

− Goal: maximize a cumulative reward by learning actions

− The System-under-control resides in a state 𝑣 ∈ Υ

− Based on which the agent then selects an 

action 𝑎 ∈ 𝐴 (according to its internal policy 𝜋) 

− Transitions to successor state: 𝑣′ ∈ Υ

− Receives a reward signal 𝜉: Υ × 𝐴 → ℝ

Introduction
Reinforcement Learning

Agent

System-

under-control
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How good is a state-action pair?

− An action-value function 𝑄𝜋: Υ × 𝐴 → ℝ

− Predicts cumulated reward on the long run 

Q-Learning:

− Learns action-value function, i.e., Q-function

− Until terminal state or maximum iterations

− Q-table stores all the values of Q-function

Introduction
Q-Learning
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State-action Value

𝑣0, 𝑎0 1

𝑣0, 𝑎1 2

𝑣1, 𝑎0 -1

… …
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Goal: learn an enforcement strategy that optimizes 

a given set of verification goals 𝑉𝐺

− An action 𝑎(𝑘): a configuration 𝑐 𝑘 ∈ 𝐶

− A state 𝜐 ∈ Υ = 𝐵 × 𝐶: a configuration 𝑐 ∈ 𝐶
and a requirement response 𝛽 ∈ 𝐵

Reinforcement Learning for Generating Verifiable RRE
Training phase
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A reward function 𝜉𝜂 𝑎 𝑘 = 𝜂 . 𝜉sur 𝑘 + 1 − 𝜂 . 𝜉ver 𝑘

− Feedback about the requirements satisfaction

− A weighted sum of:

1. A verification reward 𝜉ver 𝑘 : from the model 

checker after transforming the enforcement 

agent into an enforcement FSM every

𝑛update iterations

2. And a surrogate reward 𝜉sur 𝑘 : estimation 

of verification goals at each 𝑘 based on

the processed input history

Reinforcement Learning for Generating Verifiable RRE
Training phase
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How to transform the enforcement agent (i.e., the Q-table) into an enforcer FSM?

- One unique enforcement state per configuration 𝜁: 𝐶 ↔ 𝑍

- Best action per state 𝜚: Υ → 𝐴 (for Q-learning: 𝜚 𝑣 = argmax𝑎∈𝐴 𝑄(𝑣, 𝑎))

Example:

Two configurations 𝐶 = {c0, c1} and one verification goal 𝑉𝐺𝐿 ≔ 𝑆=?[𝜑𝐿] based on a latency requirement 𝜑𝐿

Reinforcement Learning for Generating Verifiable RRE
Transformation
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− Object detection application

− SIFT algorithm via actor graph

− Input 𝑖 is the number of features of current 

image 𝑖(𝑘)

− Latency 𝑜𝐿(𝑘) of SIFT Description Actor SD is 

input-dependent

− Latency and power requirements on SD actor

− Upper bounds: 𝑈𝐵𝐿 = 40 ms, 𝑈𝐵𝑃 = 1.2 W 

− Configuration space of a cardinality 

𝐶 = 𝑛 ⋅ 𝑚 = 4 ⋅ 20 = 80

Verification Results
Use case
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Loose enforcement

Requirement 𝝋 Latency 𝝋𝑳 Power 𝝋𝑷

𝑽𝑮 𝑷=?[𝑮
≤𝟑¬𝝋𝑳] 𝑷=?[𝑮

≤𝟑¬𝝋𝑷]

Enforcer RTI 𝑭𝟏 𝑭𝟐 𝑭𝐫𝐥𝟎 RTI 𝑭𝟏 𝑭𝟐 𝑭𝐫𝐥𝟎

Verification 

result
0 0.427 0.041 0 1 0.256 0.389 0

𝑽𝑮 𝑺=?[￢𝝋𝑳] 𝑺=?[￢𝝋𝑷]

Enforcer RTI 𝑭𝟏 𝑭𝟐 𝑭𝐫𝐥𝟏 RTI 𝑭𝟏 𝑭𝟐 𝑭𝐫𝐥𝟏

Verification 

result
0 0.5 0.121 0.173 1 0.445 0.591 0.435

Verification Results

Verification results for Race-To-Idle (RTI), 𝐹1 (1-step enforcer FSM), 𝐹2 (8-step enforcer FSM), and 

𝐹rl0 , 𝐹rl1 , 𝐹rl2 (synthesized RL-based enforcer FSMs using our approach) based on a latency upper bound 

(deadline) 𝑈𝐵𝐿 = 40 ms, and a power upper bound 𝑈𝐵𝑃 = 1.2 W

Strict enforcement

Requirement 𝝋 Latency 𝝋𝑳

𝑽𝑮 𝑨𝑮(𝝋𝑳)

Enforcer RTI 𝑭𝟏 𝑭𝟐 𝑭𝐫𝐥𝟐

Verification 

result
true false false true
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− We presented a technique using RL for automatically generating verifiable feedback-based RRE 

enforcers

− First, the enforcement agent learns an enforcement strategy based on a representative input sequence 

at design time

− Then, the learned enforcement strategy is transformed into a verifiable enforcement FSM that can 

handle unseen input data at run-time

− We apply the approach to generate controllers that increase the probability of satisfying a given set of 

verification goals compared to related work, as can be verified by model checkers

Conclusion
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