

Control Systems in the presence of Computational Problems Martina Maggio

Control: The Hidden Technology ${ }^{1}$

[^0]

In a nutshell...

- Controllers are software programs that run on hardware
- As such, they can experience computational problems
- For the rest of this talk: faults causes deadline misses

In a nutshell...

- Controllers are software programs that run on hardware
- As such, they can experience computational problems
- For the rest of this talk: faults causes deadline misses
- If we run these controller in practice we see that very often deadline misses are not a problem - but: can we certify that the system "will not misbehave" despite the presence of deadline misses?

Control Design

Modelling the Physical Phenomena ${ }^{2}$

Modelling the Physical Phenomena²

- J: moment of inertia of the center pillar

Modelling the Physical Phenomena²

- J: moment of inertia of the center pillar

Modelling the Physical Phenomena²

- J: moment of inertia of the center pillar

${ }^{2}$ For the full derivation, see Magnus Gäfvert, Modelling the Furuta Pendulum, ISSN 0280-5316

Modelling the Physical Phenomena

- Identifying system state, input, and output
- Non-linear resulting model
- Determining the system equilibria and linearizing the model

Modelling the Physical Phenomena

- Identifying system state, input, and output
- Non-linear resulting model
- Determining the system equilibria and linearizing the model

$$
\begin{aligned}
& \dot{x}(t)=A_{c} x(t)+B_{c} u(t) \\
& y(t)=C_{c} x(t)+D_{c} u(t)
\end{aligned}
$$

Modelling the Physical Phenomena

- Identifying system state, input, and output
- Non-linear resulting model
- Determining the system equilibria and linearizing the model
- Discretizing with time step T

$$
\begin{aligned}
x_{k+1} & =A_{d} x_{k}+B_{d} u_{k} \\
y_{k} & =C_{d} x_{k}+D_{d} u_{k}
\end{aligned}
$$

Example: Furuta Pendulum model

$$
\begin{aligned}
x_{k+1} & =A_{d} x_{k}+B_{d} u_{k} \\
y_{k} & =C_{d} x_{k}+D_{d} u_{k}
\end{aligned}
$$

- $x=\left[\begin{array}{lll}\theta & \dot{\theta} & \dot{\phi}\end{array}\right]^{T}, y=x, T=5 \mathrm{~ms}$
- u is the torque applied at the base level

Example: Furuta Pendulum model

$$
\begin{aligned}
x_{k+1} & =A_{d} \quad x_{k}+B_{d} u_{k} \\
y_{k} & =C_{d} \quad x_{k}+D_{d} u_{k}
\end{aligned}
$$

$x=\left[\begin{array}{lll}\theta & \dot{\theta} & \dot{\phi}\end{array}\right]^{T}, y=x, T=5 \mathrm{~ms}$

- u is the torque applied at the base level

Around the upright equilibrium point:

$$
A_{d}=\left[\begin{array}{ccc}
1.001 & 0.005 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], B_{d}=\left[\begin{array}{c}
-0.083 \\
-33.2 \\
38.6
\end{array}\right], C_{d}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], D_{d}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Controller Nominal Execution

Synthesizing the Controller

- Based on objectives (like speed of convergence and ability to reject disturbances) we can pick a control algorithm (which executes periodically inside e_{k})
- many alternatives: state/output feedback, PID, LQR, LQG, MPC, ...
- and verify that the closed-loop behaves in the desired way.

Example: Furuta Pendulum control synthesis

$$
\begin{aligned}
& x_{k+1}=A_{d} x_{k}+B_{d} u_{k} \\
& u_{k+1}=K y_{k}=K x_{k}=\left[\begin{array}{lll}
0.375 & 0.025 & 0.0125
\end{array}\right] x_{k}
\end{aligned}
$$

- Output feedback controller (but $y=x$, hence state feedback)
- At the beginning of every iteration we sense y, and calculate the next u
- Autonomous behavior: $x_{k+1}=A_{d} x_{k}+B_{d} K x_{k-1}$

Example: Furuta Pendulum control synthesis

$$
\begin{aligned}
& x_{k+1}=A_{d} x_{k}+B_{d} u_{k} \\
& u_{k+1}=K y_{k}=K x_{k}=\left[\begin{array}{lll}
0.375 & 0.025 & 0.0125
\end{array}\right] x_{k}
\end{aligned}
$$

- Output feedback controller (but $y=x$, hence state feedback)
- At the beginning of every iteration we sense y, and calculate the next u
- Autonomous behavior: $x_{k+1}=A_{d} x_{k}+B_{d} K x_{k-1}$

$$
\tilde{x}_{k}=\left[\begin{array}{c}
x_{k} \\
x_{k-1}
\end{array}\right], \tilde{x}_{k+1}=\left[\begin{array}{c}
x_{k+1} \\
x_{k}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A_{d} & B_{d} K \\
I & 0
\end{array}\right]}_{A}\left[\begin{array}{c}
x_{k} \\
x_{k-1}
\end{array}\right]=A \tilde{x}_{k}
$$

Verifying the Control Design

- Typical assumptions in terms of computation:
- instantaneous sensing and actuation
- instantaneous computation
- no communication overhead
- The design framework that we used is already employing a one-step delay paradigm, to take advantage of predictable communication and execution times

Verifying the Control Design

- Typical assumptions in terms of computation:
- instantaneous sensing and actuation
- instantaneous computation
- no communication overhead
- The design framework that we used is already employing a one-step delay paradigm, to take advantage of predictable communication and execution times
- If the spectral radius $\rho(A)$ is less than 1 , the closed-loop system is stable,

$$
\rho(A)=\max |\lambda(A)|
$$

What if there are deadline misses?

Missing a Deadline

Missing a Deadline

Missing a Deadline

For the control signal ${ }^{3}$

- Hold: keeping the previous value
- Zero: set the control signal to zero

[^1]
Missing a Deadline

For the control signal ${ }^{3}$

- Hold: keeping the previous value
- Zero: set the control signal to zero

For the computation ${ }^{4}$

- Kill: kill the current task with a clean reset, nothing happened
- Skip-Next: let the current task continue but do not start a new one in the next period and wait for the following activation

[^2]Kill\&Zero

Kill\&Zero

Hit

$$
\begin{aligned}
& x_{k+1}=A_{d} x_{k}+B_{d} u_{k} \\
& u_{k+1}=K x_{k}
\end{aligned}
$$

Kill\&Zero

Hit

$$
\begin{aligned}
& x_{k+1}=A_{d} x_{k}+B_{d} u_{k} \\
& u_{k+1}=K x_{k} \\
& \Downarrow \\
& {\left[\begin{array}{l}
x_{k+1} \\
u_{k+1}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A_{d} & B_{d} \\
K & 0
\end{array}\right]}_{A_{H}}\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]}
\end{aligned}
$$

Kill\&Zero

Hit

$$
\begin{aligned}
x_{k+1} & =A_{d} x_{k}+B_{d} u_{k} \\
u_{k+1} & =K x_{k}
\end{aligned}
$$

$$
\left[\begin{array}{l}
x_{k+1} \\
u_{k+1}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A_{d} & B_{d} \\
K & 0
\end{array}\right]}_{A_{H}}\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]
$$

Miss

$$
\begin{aligned}
& x_{k+1}=A_{d} x_{k}+B_{d} u_{k} \\
& u_{k+1}=0
\end{aligned}
$$

Kill\&Zero

Hit

$$
\begin{aligned}
& x_{k+1}=A_{d} x_{k}+B_{d} u_{k} \\
& u_{k+1}=K x_{k} \\
& \Downarrow \\
& {\left[\begin{array}{l}
x_{k+1} \\
u_{k+1}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A_{d} & B_{d} \\
K & 0
\end{array}\right]}_{A_{H}}\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]}
\end{aligned}
$$

Miss

$$
\begin{aligned}
& x_{k+1}=A_{d} x_{k}+B_{d} u_{k} \\
& u_{k+1}=0 \\
& {\left[\begin{array}{l}
x_{k+1} \\
u_{k+1}
\end{array}\right]=\underbrace{\Downarrow}_{A_{M}}\left[\begin{array}{cc}
A_{d} & B_{d} \\
0 & 0
\end{array}\right]}
\end{aligned}\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right] .
$$

Kill\&Zero

Hit

$$
\begin{aligned}
& x_{k+1}=A_{d} x_{k}+B_{d} u_{k} \\
& u_{k+1}=K x_{k} \\
& \Downarrow \\
& {\left[\begin{array}{l}
x_{k+1} \\
u_{k+1}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A_{d} & B_{d} \\
K & 0
\end{array}\right]}_{A_{H}}\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]}
\end{aligned}
$$

Miss

$$
\begin{aligned}
& x_{k+1}=A_{d} x_{k}+B_{d} u_{k} \\
& u_{k+1}=0 \\
& \Downarrow \\
& {\left[\begin{array}{l}
x_{k+1} \\
u_{k+1}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A_{d} & B_{d} \\
0 & 0
\end{array}\right]}_{A_{M}}\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]}
\end{aligned}
$$

The closed-loop system switches arbitrarily between A_{H} and A_{M}

Kill\&Zero

Hit

$$
\begin{aligned}
& x_{k+1}=A_{d} x_{k}+B_{d} u_{k} \\
& u_{k+1}=K x_{k}
\end{aligned}
$$

The closed-loop system switches arbitrarily between A_{H} and A_{M}

Miss

$$
\begin{aligned}
& x_{k+1}=A_{d} x_{k}+B_{d} u_{k} \\
& u_{k+1}=0 \\
& \left.\Downarrow \begin{array}{l}
x_{k+1} \\
u_{k+1}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A_{d} & B_{d} \\
0 & 0
\end{array}\right]}_{A_{M}}\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]
\end{aligned}
$$

We don't have much hope to guarantee stability...

Kill\&Zero

Hit

$$
\begin{aligned}
& x_{k+1}=A_{d} x_{k}+B_{d} u_{k} \\
& u_{k+1}=K x_{k} \\
& \Downarrow \\
& {\left[\begin{array}{l}
x_{k+1} \\
u_{k+1}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A_{d} & B_{d} \\
K & 0
\end{array}\right]}_{A_{H}}\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]}
\end{aligned}
$$

The closed-loop system switches arbitrarily between A_{H} and A_{M}

Miss

$$
\begin{aligned}
& x_{k+1}=A_{d} x_{k}+B_{d} u_{k} \\
& u_{k+1}=0 \\
& {\left[\begin{array}{l}
x_{k+1} \\
u_{k+1}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A_{d} & B_{d} \\
0 & 0
\end{array}\right]}_{A_{M}}\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]}
\end{aligned}
$$

We don't have much hope to guarantee stability...
...unless we add constraints!

Constraint Example

"We cannot miss more than n consecutive deadlines" 5
...means that the system switches arbitrarily between matrices in Σ :

$$
\Sigma=\left\{A_{H} A_{M}^{i} \mid i \in \mathbb{Z}, 0 \leq i \leq n\right\}
$$

[^3]
Constraint Example

"We cannot miss more than n consecutive deadlines" ${ }^{5}$
...means that the system switches arbitrarily between matrices in Σ :

${ }^{5}$ Martina Maggio, Arne Hamann, Eckart Mayer-John, Dirk Ziegenbein, ECRTS 2020
"Control System Stability under Consecutive Deadline Misses Constraints"

Joint Spectral Radius

We can use a result ${ }^{6}$ on switching systems, that states that the system that arbitrarily switches among matrices in Σ is asymptotically stable if and only if the joint spectral radius ${ }^{7} \rho(\Sigma)$ is less than 1

$$
\begin{aligned}
\rho_{\mu}(\Sigma) & =\sup \left\{\rho(A)^{\frac{1}{\mu}}: A \in \Sigma^{\mu}\right\} \\
\rho(\Sigma) & =\lim \sup _{\mu \rightarrow \infty} \rho_{\mu}(\Sigma)
\end{aligned}
$$

[^4]
Joint Spectral Radius

- The problem of determining if the joint spectral radius is less than 1 is undecidable ${ }^{8}$ even for "simple" set of matrices Σ
- But lower and upper bounds $\left\{\rho_{\ell}(\Sigma), \rho_{u}(\Sigma)\right\}$ can be found via many ${ }^{9}$ different analytical methods
- So if $\rho_{u}(\Sigma)<1$ the stability of the system with (constrained) deadline misses is guaranteed

[^5]
Fault Models

- Probabilistic
- Constrained, or weakly-hard ${ }^{10}$
${ }^{10}$ Guillem Bernat, Alan Burns, Albert Liamosí, IEEE Transactions on Computers, 2001, "Weakly hard real-time systems"

Fault Models

- Probabilistic
- Constrained, or weakly-hard ${ }^{10}$

$$
\begin{array}{ll}
\text { 1. } & \tau \vdash\binom{x}{k}, \text { AnyHit } \\
\text { 2. } & \tau \vdash\left\langle\begin{array}{l}
x \\
k
\end{array}\right\rangle \text {, RowHit } \\
\text { 3. } & \tau \vdash \overline{\binom{x}{k}} \text {, AnyMiss } \\
\text { 4. } \tau \vdash \overline{\left\langle\begin{array}{l}
x \\
k
\end{array}\right\rangle}=\overline{\langle x\rangle} \text {, RowMiss } \\
\text { with } x \in \mathbb{N} \geq, k \in \mathbb{N}^{>} \text {, where } x \leq k
\end{array}
$$

${ }^{10}$ Guillem Bernat, Alan Burns, Albert Liamosí, IEEE Transactions on Computers, 2001, "Weakly hard real-time systems"

Fault Models

- Probabilistic
- Constrained, or weakly-hard ${ }^{10}$

```
        1. \(\tau \vdash\binom{x}{k}\), AnyHit
        2. \(\tau \vdash\left\langle\begin{array}{l}x \\ k\end{array}\right\rangle\), RowHit
        3. \(\tau \vdash \overline{\binom{x}{k}}\), AnyMiss
        4. \(\tau \vdash \overline{\left\langle\begin{array}{l}x \\ k\end{array}\right\rangle}=\overline{\langle x\rangle}\), RowMiss
    with \(x \in \mathbb{N} \geq, k \in \mathbb{N}^{>}\), where \(x \leq k\)
```

${ }^{10}$ Guillem Bernat, Alan Burns, Albert Liamosí, IEEE Transactions on Computers, 2001, "Weakly hard real-time systems"

Weakly-Hard Constraints as Automata

$$
\binom{x}{k}=\binom{1}{3}
$$

- Any weakly-hard constraint can be transformed into a corresponding finite state machine ${ }^{a}$
- The transformation enables the analysis via joint spectral radius ${ }^{b}$

[^6]
Performance Analysis ${ }^{11}$

${ }^{11}$ Nils Vreman, Anton Cervin and Martina Maggio, ECRTS 2021
"Stability and Performance Analysis of Control Systems Subject to Bursts of Deadline Misses"

Conclusion

- Stability and performance analysis of control systems subject to deadline misses
- Sometimes when control software experiences faults (missing deadlines) there is no need to worry!

maggio@cs.uni-saarland.de

[^0]: ${ }^{1}$ This is the title of a famous lectio magistralis on control given by Karl-Johan Åstrom.

[^1]: ${ }^{3}$ Steffen Linsenmayer and Frank Allgöwer, CDC 2017
 "Stabilization of networked control systems with weakly hard real-time dropout description"

[^2]: ${ }^{3}$ Steffen Linsenmayer and Frank Allgöwer, CDC 2017
 "Stabilization of networked control systems with weakly hard real-time dropout description"
 ${ }^{4}$ Anton Cervin, IFAC World Congress 2005
 "Analysis of overrun strategies in periodic control tasks."

[^3]: ${ }^{5}$ Martina Maggio, Arne Hamann, Eckart Mayer-John, Dirk Ziegenbein, ECRTS 2020 "Control System Stability under Consecutive Deadline Misses Constraints"

[^4]: ${ }^{6}$ Gian-Carlo Rota and Gilbert Strang, Indagationes Mathematicae, 63:379-381, 1960 "A note on the joint spectral radius"
 ${ }^{7}$ Raphael Junger, Lecture Notes in Control and Information Sciences, 2009
 "The Joint Spectral Radius: Theory and Applications"

[^5]: ${ }^{8}$ Vincent Blondel and John Tsitsiklis, Systems \& Control Letters, 41(2):135-140, 2000
 "The boundedness of all products of a pair of matrices is undecidable"
 ${ }^{9}$ Guillaume Vankeerberghen, Julien Hendrickx, and Raphaël M. Jungers, HSCC 2014
 "JSR: a toolbox to compute the joint spectral radius"

[^6]: ${ }^{a}$ Nils Vreman, Richard Pates, and Martina Maggio, RTAS 2022 "WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints" https://github.com/NilsVreman/WeaklyHard.jl
 ${ }^{b}$ Nils Vreman, Paolo Pazzaglia, Victor Magron, Jie Wang, Martina Maggio, CDC \& Letters 2022 "Stability of Linear Systems Under Extended Weakly-Hard Constraints"

