Control Systems in the presence of Computational Problems Martina Maggio

Control: The Hidden Technology¹

¹This is the title of a famous *lectio magistralis* on control given by Karl-Johan Åstrom.

In a nutshell...

- Controllers are software programs that run on hardware
- As such, they can experience computational problems
- ▶ For the rest of this talk: faults causes *deadline misses*

In a nutshell...

- Controllers are software programs that run on hardware
- As such, they can experience computational problems
- ▶ For the rest of this talk: faults causes *deadline misses*
- If we run these controller in practice we see that very often deadline misses are not a problem – but: can we certify that the system "will not misbehave" despite the presence of deadline misses?

Control Design

Modelling the Physical Phenomena 2

Modelling the Physical Phenomena²

Modelling the Physical Phenomena²

Modelling the Physical Phenomena²

²For the full derivation, see Magnus Gäfvert, Modelling the Furuta Pendulum, ISSN 0280–5316

Modelling the Physical Phenomena

Identifying system state, input, and output

- Non-linear resulting model
- > Determining the system *equilibria* and linearizing the model

Modelling the Physical Phenomena

Identifying system state, input, and output

Non-linear resulting model

Determining the system equilibria and linearizing the model

$$\dot{x}(t) = A_c x(t) + B_c u(t)$$
$$y(t) = C_c x(t) + D_c u(t)$$

Modelling the Physical Phenomena

Identifying system state, input, and output

- Non-linear resulting model
- Determining the system equilibria and linearizing the model
- Discretizing with time step T

$$x_{k+1} = A_d x_k + B_d u_k$$
$$y_k = C_d x_k + D_d u_k$$

Example: Furuta Pendulum model

$$x_{k+1} = A_d x_k + B_d u_k$$
$$y_k = C_d x_k + D_d u_k$$

•
$$x = \begin{bmatrix} \theta & \dot{\theta} & \dot{\phi} \end{bmatrix}^T$$
, $y = x$, $T = 5 ms$
• u is the torque applied at the base level

Example: Furuta Pendulum model

$$x_{k+1} = A_d x_k + B_d u_k$$
$$y_k = C_d x_k + D_d u_k$$

•
$$x = \begin{bmatrix} \theta & \dot{\theta} & \dot{\phi} \end{bmatrix}^T$$
, $y = x$, $T = 5 ms$
• u is the torque applied at the base level

Around the *upright* equilibrium point:

$$A_d = \begin{bmatrix} 1.001 & 0.005 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, B_d = \begin{bmatrix} -0.083 \\ -33.2 \\ 38.6 \end{bmatrix}, C_d = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, D_d = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

Controller Nominal Execution

Synthesizing the Controller

- Based on objectives (like speed of convergence and ability to reject disturbances) we can pick a control algorithm (which executes periodically inside e_k)
 - many alternatives: state/output feedback, PID, LQR, LQG, MPC, ...
- and verify that the closed-loop behaves in the desired way.

Example: Furuta Pendulum control synthesis

$$x_{k+1} = A_d x_k + B_d u_k$$
$$u_{k+1} = K y_k = K x_k = \begin{bmatrix} 0.375 & 0.025 & 0.0125 \end{bmatrix} x_k$$

- Output feedback controller (but y = x, hence state feedback)
- At the beginning of every iteration we sense y, and calculate the next u
- Autonomous behavior: $x_{k+1} = A_d x_k + B_d K x_{k-1}$

Example: Furuta Pendulum control synthesis

$$x_{k+1} = A_d x_k + B_d u_k$$
$$u_{k+1} = K y_k = K x_k = \begin{bmatrix} 0.375 & 0.025 & 0.0125 \end{bmatrix} x_k$$

- Output feedback controller (but y = x, hence state feedback)
- At the beginning of every iteration we sense y, and calculate the next u
- Autonomous behavior: $x_{k+1} = A_d x_k + B_d K x_{k-1}$

$$\tilde{x}_{k} = \begin{bmatrix} x_{k} \\ x_{k-1} \end{bmatrix}, \quad \tilde{x}_{k+1} = \begin{bmatrix} x_{k+1} \\ x_{k} \end{bmatrix} = \underbrace{\begin{bmatrix} A_{d} & B_{d} \\ I & 0 \end{bmatrix}}_{A} \begin{bmatrix} x_{k} \\ x_{k-1} \end{bmatrix} = A \tilde{x}_{k}$$

Verifying the Control Design

Typical assumptions in terms of computation:

- instantaneous sensing and actuation
- instantaneous computation
- no communication overhead
- The design framework that we used is already employing a one-step delay paradigm, to take advantage of predictable communication and execution times

Verifying the Control Design

Typical assumptions in terms of computation:

- instantaneous sensing and actuation
- instantaneous computation
- no communication overhead
- The design framework that we used is already employing a one-step delay paradigm, to take advantage of predictable communication and execution times

▶ If the spectral radius $\rho(A)$ is less than 1, the closed-loop system is stable,

 $ho\left(A
ight)=\max\left|\lambda\left(A
ight)
ight|$

What if there are deadline misses?

For the control signal³

- **Hold**: keeping the previous value
- **Zero**: set the control signal to zero

³Steffen Linsenmayer and Frank Allgöwer, CDC 2017

[&]quot;Stabilization of networked control systems with weakly hard real-time dropout description"

For the control signal³

- ► Hold: keeping the previous value
- Zero: set the control signal to zero

For the computation⁴

- **Kill**: kill the current task with a clean reset, nothing happened
- Skip-Next: let the current task continue but do not start a new one in the next period and wait for the following activation

"Stabilization of networked control systems with weakly hard real-time dropout description"

³Steffen Linsenmayer and Frank Allgöwer, CDC 2017

⁴Anton Cervin, IFAC World Congress 2005

[&]quot;Analysis of overrun strategies in periodic control tasks."

Hit

$$x_{k+1} = A_d x_k + B_d u_k$$
$$u_{k+1} = K x_k$$

Hit

$$\begin{aligned} x_{k+1} &= A_d \, x_k + B_d \, u_k \\ u_{k+1} &= K \, x_k \\ \begin{bmatrix} x_{k+1} \\ u_{k+1} \end{bmatrix} = \underbrace{\begin{bmatrix} A_d & B_d \\ K & 0 \end{bmatrix}}_{A_H} \begin{bmatrix} x_k \\ u_k \end{bmatrix} \end{aligned}$$

Hit

$$\begin{aligned} x_{k+1} &= A_d \, x_k + B_d \, u_k \\ u_{k+1} &= K \, x_k \\ \begin{bmatrix} x_{k+1} \\ u_{k+1} \end{bmatrix} = \underbrace{\begin{bmatrix} A_d & B_d \\ K & 0 \end{bmatrix}}_{A_H} \begin{bmatrix} x_k \\ u_k \end{bmatrix} \end{aligned}$$

Miss

$$\begin{aligned} x_{k+1} &= A_d \, x_k + B_d \, u_k \\ u_{k+1} &= 0 \end{aligned}$$

Hit

$$\begin{aligned} x_{k+1} &= A_d \, x_k + B_d \, u_k \\ u_{k+1} &= K \, x_k \\ \begin{bmatrix} x_{k+1} \\ u_{k+1} \end{bmatrix} = \underbrace{\begin{bmatrix} A_d & B_d \\ K & 0 \end{bmatrix}}_{A_H} \begin{bmatrix} x_k \\ u_k \end{bmatrix} \end{aligned}$$

Miss

$$\begin{aligned} x_{k+1} &= A_d x_k + B_d u_k \\ u_{k+1} &= 0 \\ \begin{bmatrix} x_{k+1} \\ u_{k+1} \end{bmatrix} = \underbrace{\begin{bmatrix} A_d & B_d \\ 0 & 0 \end{bmatrix}}_{A_M} \begin{bmatrix} x_k \\ u_k \end{bmatrix} \end{aligned}$$

Hit

$$\begin{aligned} x_{k+1} &= A_d \, x_k + B_d \, u_k \\ u_{k+1} &= K \, x_k \\ & \downarrow \\ \begin{bmatrix} x_{k+1} \\ u_{k+1} \end{bmatrix} = \underbrace{\begin{bmatrix} A_d & B_d \\ K & 0 \end{bmatrix}}_{A_H} \begin{bmatrix} x_k \\ u_k \end{bmatrix} \end{aligned}$$

The closed-loop system switches arbitrarily between A_H and A_M

Miss

$$\begin{aligned} x_{k+1} &= A_d \, x_k + B_d \, u_k \\ u_{k+1} &= 0 \\ \begin{bmatrix} x_{k+1} \\ u_{k+1} \end{bmatrix} = \underbrace{\begin{bmatrix} A_d & B_d \\ 0 & 0 \end{bmatrix}}_{A_M} \begin{bmatrix} x_k \\ u_k \end{bmatrix} \end{aligned}$$

Hit

$$x_{k+1} = A_d x_k + B_d u_k$$
$$u_{k+1} = K x_k$$
$$\begin{bmatrix} x_{k+1} \\ u_{k+1} \end{bmatrix} = \underbrace{\begin{bmatrix} A_d & B_d \\ K & 0 \end{bmatrix}}_{A_H} \begin{bmatrix} x_k \\ u_k \end{bmatrix}$$

The closed-loop system switches arbitrarily between A_H and A_M

Miss

$$\begin{aligned} x_{k+1} &= A_d \, x_k + B_d \, u_k \\ u_{k+1} &= 0 \\ \begin{bmatrix} x_{k+1} \\ u_{k+1} \end{bmatrix} = \underbrace{\begin{bmatrix} A_d & B_d \\ 0 & 0 \end{bmatrix}}_{A_M} \begin{bmatrix} x_k \\ u_k \end{bmatrix} \end{aligned}$$

We don't have much hope to guarantee stability...

Hit

$$\begin{aligned} x_{k+1} &= A_d \, x_k + B_d \, u_k \\ u_{k+1} &= K \, x_k \\ \begin{bmatrix} x_{k+1} \\ u_{k+1} \end{bmatrix} = \underbrace{\begin{bmatrix} A_d & B_d \\ K & 0 \end{bmatrix}}_{A_H} \begin{bmatrix} x_k \\ u_k \end{bmatrix} \end{aligned}$$

The closed-loop system switches arbitrarily between A_H and A_M

Miss

$$\begin{aligned} x_{k+1} &= A_d \, x_k + B_d \, u_k \\ u_{k+1} &= 0 \\ \begin{bmatrix} x_{k+1} \\ u_{k+1} \end{bmatrix} = \underbrace{\begin{bmatrix} A_d & B_d \\ 0 & 0 \end{bmatrix}}_{A_M} \begin{bmatrix} x_k \\ u_k \end{bmatrix} \end{aligned}$$

We don't have much hope to guarantee stability... ...unless we add constraints! "We cannot miss more than *n* consecutive deadlines" ⁵ ...means that the system switches arbitrarily between matrices in Σ :

 $\Sigma = \{A_H A_M^i \mid i \in \mathbb{Z}, 0 \le i \le n\}$

⁵Martina Maggio, Arne Hamann, Eckart Mayer-John, Dirk Ziegenbein, ECRTS 2020 "Control System Stability under Consecutive Deadline Misses Constraints"

"We cannot miss more than *n* consecutive deadlines" ⁵ ...means that the system switches arbitrarily between matrices in Σ :

⁵Martina Maggio, Arne Hamann, Eckart Mayer-John, Dirk Ziegenbein, ECRTS 2020 "Control System Stability under Consecutive Deadline Misses Constraints"

We can use a result⁶ on switching systems, that states that the system that arbitrarily switches among matrices in Σ is asymptotically stable if and only if the joint spectral radius⁷ $\rho(\Sigma)$ is less than 1

$$egin{array}{rcl}
ho_{\mu}(\mathbf{\Sigma}) &=& \sup\left\{
ho\left(\mathcal{A}
ight)^{rac{1}{\mu}}:\mathcal{A}\in\mathbf{\Sigma}^{\mu}
ight\}
ight. \
ho\left(\mathbf{\Sigma}
ight) &=& \limsup_{\mu
ightarrow\infty}
ho_{\mu}(\mathbf{\Sigma}) \end{array}$$

⁶Gian-Carlo Rota and Gilbert Strang, Indagationes Mathematicae, 63:379-381, 1960 "A note on the joint spectral radius"

⁷Raphael Junger, Lecture Notes in Control and Information Sciences, 2009 "The Joint Spectral Radius: Theory and Applications"

Joint Spectral Radius

- The problem of determining if the joint spectral radius is less than 1 is undecidable⁸ even for "simple" set of matrices Σ
- But lower and upper bounds {ρ_ℓ(Σ), ρ_u(Σ)} can be found via many⁹ different analytical methods
- So if ρ_u (Σ) < 1 the stability of the system with (constrained) deadline misses is guaranteed</p>

⁸Vincent Blondel and John Tsitsiklis, Systems & Control Letters, 41(2):135–140, 2000 "The boundedness of all products of a pair of matrices is undecidable"

⁹Guillaume Vankeerberghen, Julien Hendrickx, and Raphaël M. Jungers, HSCC 2014 "JSR: a toolbox to compute the joint spectral radius"

Fault Models

Probabilistic

Constrained, or weakly-hard¹⁰

¹⁰Guillem Bernat, Alan Burns, Albert Liamosí, IEEE Transactions on Computers, 2001, "Weakly hard real-time systems"

Fault Models

Probabilistic

► Constrained, or *weakly-hard*¹⁰

1.
$$\tau \vdash \binom{x}{k}$$
, AnyHit
2. $\tau \vdash \binom{x}{k}$, RowHit
3. $\tau \vdash \overline{\binom{x}{k}}$, AnyMiss
4. $\tau \vdash \overline{\binom{x}{k}} = \overline{\langle x \rangle}$, RowMiss
with $x \in \mathbb{N}^{\geq}$, $k \in \mathbb{N}^{>}$, where $x \leq k$

¹⁰Guillem Bernat, Alan Burns, Albert Liamosí, IEEE Transactions on Computers, 2001, "Weakly hard real-time systems"

Fault Models

Probabilistic

► Constrained, or *weakly-hard*¹⁰

1.
$$\tau \vdash \binom{x}{k}$$
, AnyHit
2. $\tau \vdash \binom{x}{k}$, RowHit
3. $\tau \vdash \overline{\binom{x}{k}}$, AnyMiss
4. $\tau \vdash \overline{\binom{x}{k}} = \overline{\langle x \rangle}$, RowMiss
with $x \in \mathbb{N}^{\geq}$, $k \in \mathbb{N}^{>}$, where $x \leq k$

$$\dots 0 \underbrace{10111}_{k} 0110\dots$$

¹⁰Guillem Bernat, Alan Burns, Albert Liamosí, IEEE Transactions on Computers, 2001, "Weakly hard real-time systems"

Weakly-Hard Constraints as Automata

- Any weakly-hard constraint can be transformed into a corresponding finite state machine^a
- The transformation enables the analysis via joint spectral radius^b

^aNils Vreman, Richard Pates, and Martina Maggio, RTAS 2022 "WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints" https://github.com/NilsVreman/WeaklyHard.jl

^bNils Vreman, Paolo Pazzaglia, Victor Magron, Jie Wang, Martina Maggio, CDC & Letters 2022 "Stability of Linear Systems Under Extended Weakly-Hard Constraints"

Performance Analysis¹¹

¹¹Nils Vreman, Anton Cervin and Martina Maggio, ECRTS 2021 "Stability and Performance Analysis of Control Systems Subject to Bursts of Deadline Misses"

Conclusion

Stability and performance analysis of control systems subject to deadline misses
 Sometimes when control software experiences faults (missing deadlines) there is no need to worry!

maggio@cs.uni-saarland.de