

Response Time Analysis for RT-MQTT Protocol Grounded on SDN

Ehsan Shahri, Paulo Pedreiras, Luis Almeida

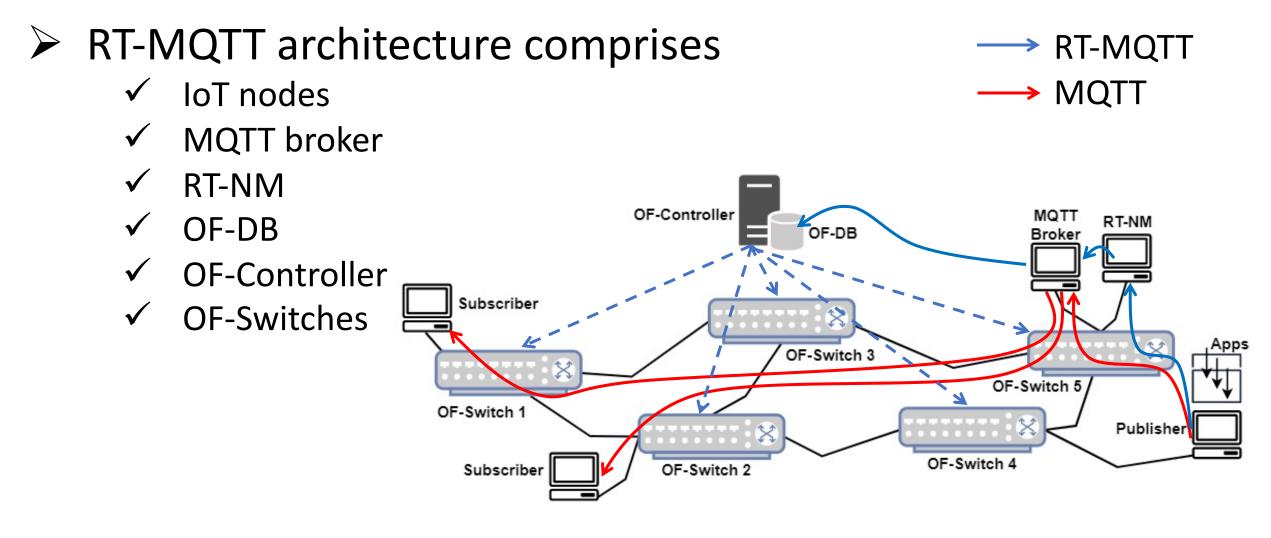
DETI/IT, University of Aveiro, Portugal FEUP/CISTER, University of Porto, Portugal

This work is funded by Portuguese national funds through FCT/MCTES and, when applicable, co-funded by European Community funds, under projects IT-UIDB/50008/2020-UIDP/50008/2020 and CISTER-UIDB/04234/2020, as well as the FCT scholarship PD/BD/137388/2018.

- Industry 4.0 and IIoT in Industrial Operations:
 - Improvements: scalability, transparency, agility, flexibility and efficiency
 - Requirements: timing behaviour, high predictability and stability

➢ Why MQTT?

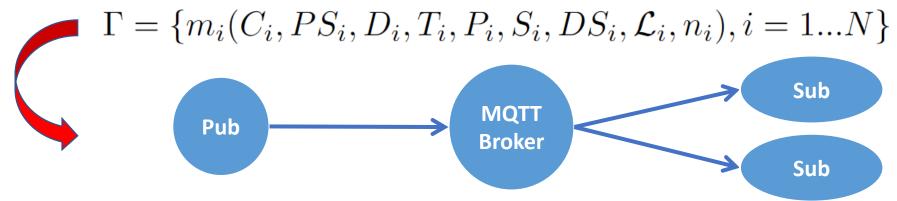
- It is a most popular **application-layer protocol** in (I)IoT applications:
 - Simplicity, low footprint and scalability
 - Effective publisher-subscriber capability


MQTT Limitation:

It misses support for real-time behaviour

Contribution

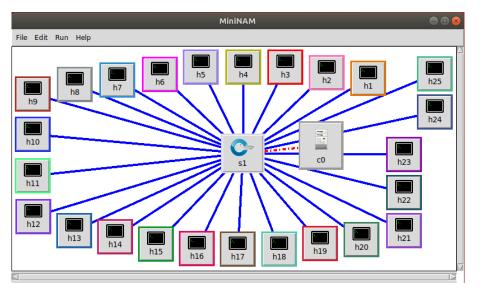
- Previous work: RT-MQTT Protocol
 - It extends MQTT with real-time services:
 - Allowing applications to define real-time requirements
 - ✓ Translating to **network reservations** using SDN
- Contribution of this work:
 - We first formalize RT-MQTT system model
 - We show RT-MQTT worst-case communication behaviour is analysable
 - Using fixed-priority non-preemptive scheduling


Network Architecture

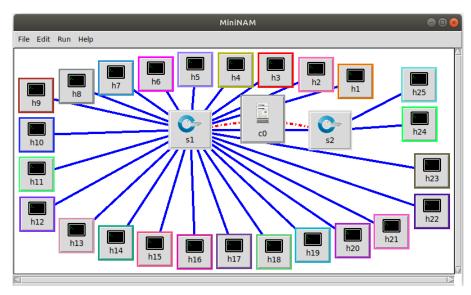
System Model

CISTER FACULDADE DE ENCENHARIA UNIVERSIDADE DO PORTO

- Message Model
- RT-MQTT classifies traffic flows in non-real-time and real-time
 - ✓ Real-time traffic **model**:


- Scheduling Model:
 - A non-preemptive fixed priority scheduling with FIFO strategy is used
 - The generated delays in the network are categorized in two types:
 - ✓ Blocking delay
 - ✓ Interference delay

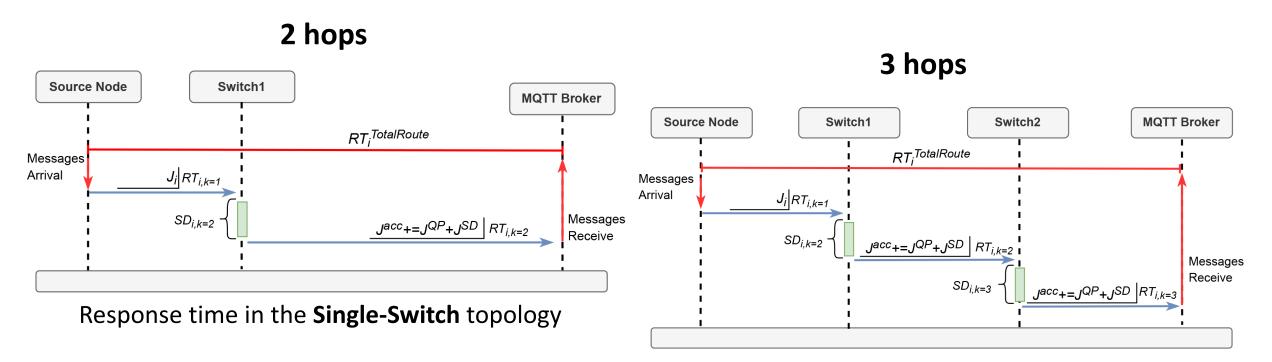
We use the analyses of R.I.Davis and A.Burns, 2008


Assessment

- Emulation Scenario (Mininet VN emulator):
 - Response times are measured for a set of MQTT messages
 - Two network topologies are considered: Single-Switch and Dual-Switch
 - Three load-levels are investigated: A (5 pubs), B (10 pubs), and C (20 pubs)
 - Heterogeneous data are exchanged (real-time and non-real-time)

Single-Switch network topology.

Dual-Switch network topology.



- Properties of the Real-Time traffic
 - ✓ **Periods** in [2 15] *ms*
 - ✓ Single packet messages with size 1500 bytes
- * Non-real-time traffic
 - ✓ **TCP** packets using D-ITG (Distributed Internet Traffic Generator)
 - ✓ Audio/video streams using VLC media player
 - ✓ **Files** (based on File Transfer Protocol (FTP)) using vsftpd
- Each combination was executed 1000 times
 - ✓ With each publisher generating 100 messages per run

Assessment

CISTER FACULDADE DE ENCENHARIA UNIVERSIDADE DO PORTO

- *** Measurement points** in the experiments are shown for:
 - ✓ Single-Switch
 - ✓ Dual-Switch

Response time in the **Dual-Switch** topology

Analytical (CalcRT) versus observed (ExpRT) WCRT for Single-Switch topology

 $Calc.RT_i \square Exp.RT_i$ 1.5 $\mathbf{3}$ $\mathbf{2}$ 0.77 **WCRT** 0.64 0.65 0.8% 0.50 m_2 m_5 m_7 m_{10} m_1 m_2 m_3 m_4 m_5 m_1 m_3 m_4 m_6 m_8 m_9 Message ID Message ID 2 hops, high load (C) 5.8h $\Box Calc.RT_i \Box Exp.RT_i$ 5.61 6 1.54 2.34 1 3.¹⁸ P 3.34 < 2.64 . 3.° 2.98 **WCRT** $\mathbf{2}$ 0 m_6 m_{13} m_{16} m_{18} m_2 m_5 m_{10} m_{11} m_{12} m_{17} m_1 m_3 m_4 m_7 m_8 m_9 m_{14} m_{15} m_{20}

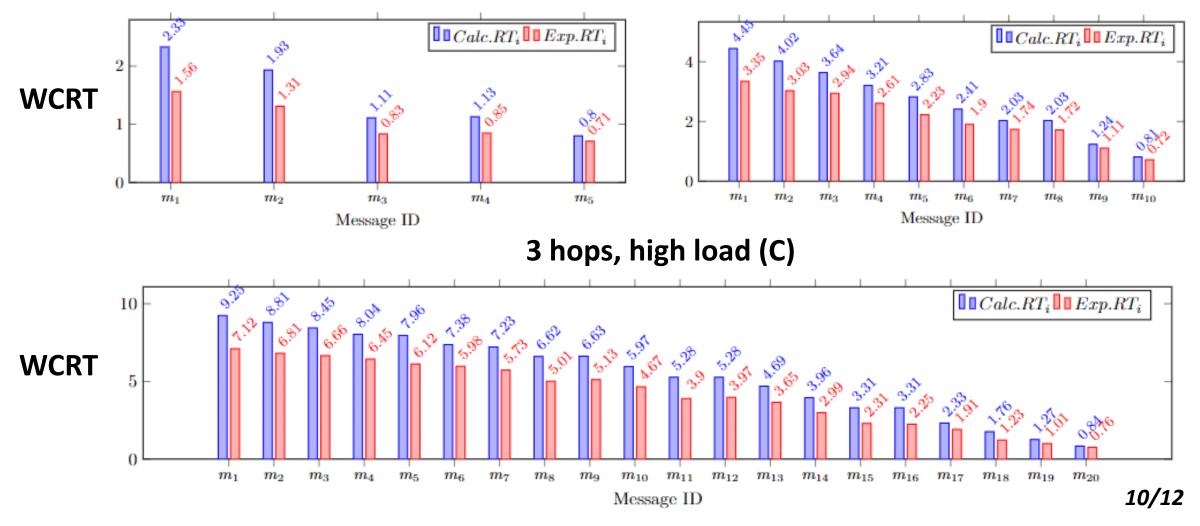
Message ID

2 hops, light load (A)

2 hops, mid load (B)

 m_{19}

U. PORTO


CISTER

> Analytical (*CalcRT*) versus observed (*ExpRT*) WCRT for Dual-Switch topology

3 hops, light load (A)

3 hops, mid load (B)

U. PORTO

Comparing Analytical (CalcRT) versus observed (ExpRT) WCRT

	Light load (A)	Mid load (B)	High load (C)
2 hops (1 switch)	Max ratio: 1.69	Max ratio: 1.45	Max ratio: 1.10
	Min ratio: 1.01	Min ratio: 1.04	Min ratio: 1.03
3 hops (2 switches)	Max ratio: 1.49	Max ratio: 1.32	Max ratio: 1.29
	Min ratio: 1.12	Min ratio: 1.11	Min ratio: 1.10

CalcRT / ExpRT

✓ CalcRT / ExpRT > 1 → Architecture respects the analysis
→ Pessimism is tight for high priority messages and generally decreases with load level

Conclusion

- RT-MQTT is an extension of MQTT with real-time services based on SDN
- An **existing response time analysis** is applied to RT-MQTT:
 - ✓ Assumes non-preemptive fixed-priority scheduling of sporadic messages
 - Enforced by the multi-hop SDN/OpenFlow switched network
 - ✓ Focuses on the worst-case response time of the real-time traffic
- We carried out validation experiments with heterogeneous traffic
 - ✓ Used the **Mininet** emulator with two topologies and 3 load levels
 - ✓ Generated heterogeneous traffic for 1000 times
 - ✓ Observed WCRT was always below Analytical WCRT
 - ✓ Pessimism varied with an average rate between 1.11 and 1.36
- In future work we will consider the end-to-end delay (+broker +end nodes)