
Efficient Abstraction of Clock Synchronization at
the Operating System Level

Alessandro Sorrentino, Federico Terraneo, Alberto Leva

Politecnico di Milano, Italy



Clock synchronization overview Motivation Proposed solution Results

How does a real time (operating) system know time?

Timer counter
Clock

Oscillator

Timer match register

=

Bu
s

Interrupt

To CPU

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 1/ 19



Clock synchronization overview Motivation Proposed solution Results

How does a real time (operating) system know time?

Timer counter
Clock

Oscillator

Timer match register

=

Bu
s

Interrupt

To CPU

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 1/ 19



Clock synchronization overview Motivation Proposed solution Results

How does a real time (operating) system know time?

int getTime ()

{

return TIM_CNT;

}

void setNextInterrupt(int t)

{

TIM_MATCH = t;

}

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 2/ 19



Clock synchronization overview Motivation Proposed solution Results

Enter distributed real-time systems

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 3/ 19



Clock synchronization overview Motivation Proposed solution Results

The effect of frequency error

Synchronization error between two oscillators that differ in
frequency by 50ppm, or 0.005%.

e =
∫ t
0

δs(τ)

f0
dτ

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 4/ 19



Clock synchronization overview Motivation Proposed solution Results

Fixing the problem

Many approaches to clock synchronization.

• Master-slave: all nodes synchronize to a time reference

• Consensus-based: nodes synchronize among each other

• ...

In this presentation we focus on the master-slave case.

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 5/ 19



Clock synchronization overview Motivation Proposed solution Results

Fixing the problem

We need three new actors

• A sensor, to measure our synchronization error

• An actuator, to correct our clock

• A clock synchronization algorithm

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 6/ 19



Clock synchronization overview Motivation Proposed solution Results

Basic clock synchronization (no skew compensation)

Basic clock synchronization

• The sensor: clock synchronization packets from the master

• The actuator: overwriting the timer counter

• The clock synchronization algorithm: TPSN, DMTS, ...

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 7/ 19



Clock synchronization overview Motivation Proposed solution Results

Basic clock synchronization (no skew compensation)

int getTime ()

{

return TIM_CNT;

}

void setNextInterrupt(int t)

{

TIM_MATCH = t;

}

void onClockSyncPacket(int timestamp)

{

TIM_CNT = syncAlgorithm(timestamp);

}

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 8/ 19



Clock synchronization overview Motivation Proposed solution Results

Basic clock synchronization (no skew compensation)

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 9/ 19



Clock synchronization overview Motivation Proposed solution Results

Advanced clock synchronization (with skew compensation)

Advanced clock synchronization

• The sensor: clock synchronization packets from the master

• The actuator: something that can change clock frequency ...

• The clock synchronization algorithm: FTSP, RBS, TATS,
FLOPSYNC-2 ...

How to change the clock frequency

• hardware approach: possible, but expensive

• software approach: virtual clock

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 10/ 19



Clock synchronization overview Motivation Proposed solution Results

Advanced clock synchronization (with skew compensation)

float a;

int b;

int getTime ()

{

return a * TIM_CNT + b; // Virtual clock

}

void setNextInterrupt(int t)

{

TIM_MATCH = (t - b) / a;

}

void onClockSyncPacket(int timestamp)

{

int error = computeError(tiemstamp);

tie(a,b) = syncAlgorithm(error);

}

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 11/ 19



Clock synchronization overview Motivation Proposed solution Results

Advanced clock synchronization (with skew compensation)

A virtual clock makes it possible to have a continuous/monotonic
clock, but a good sync algorithm is required.

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 12/ 19



Clock synchronization overview Motivation Proposed solution Results

Motivation of this work

When adding a virtual clock to your codebase, you have two times

• Corrected time (virtual clock time)

• Uncorrected time (HW clock time)

From a software engineering perspective, uncorrected time is best
encapsulated.

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 13/ 19



Clock synchronization overview Motivation Proposed solution Results

Motivation of this work

When adding a virtual clock to your codebase, you have two times

• Corrected time (virtual clock time)

• Uncorrected time (HW clock time)

From a software engineering perspective, uncorrected time is best
encapsulated.

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 13/ 19



Clock synchronization overview Motivation Proposed solution Results

Motivation of this work

However, uncorrected timestamps are used by the sensor code that
measures clock synchronization error.

If the entire OS uses corrected time, the clock synchronization
algorithms sees the error corrected by the previous iteration of the
algorithm itself.

Formally, the model of the clock synchronization sensor becomes
nonlinear.

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 14/ 19



Clock synchronization overview Motivation Proposed solution Results

Motivation of this work

However, uncorrected timestamps are used by the sensor code that
measures clock synchronization error.

If the entire OS uses corrected time, the clock synchronization
algorithms sees the error corrected by the previous iteration of the
algorithm itself.

Formally, the model of the clock synchronization sensor becomes
nonlinear.

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 14/ 19



Clock synchronization overview Motivation Proposed solution Results

Motivation of this work

However, uncorrected timestamps are used by the sensor code that
measures clock synchronization error.

If the entire OS uses corrected time, the clock synchronization
algorithms sees the error corrected by the previous iteration of the
algorithm itself.

Formally, the model of the clock synchronization sensor becomes
nonlinear.

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 14/ 19



Clock synchronization overview Motivation Proposed solution Results

Proposed solution

Make a control algorithm that can deal with the introduced
nonlinearity.

How? feedback linearization.

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 15/ 19



Clock synchronization overview Motivation Proposed solution Results

Proposed solution

Make a control algorithm that can deal with the introduced
nonlinearity.

How? feedback linearization.

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 15/ 19



Clock synchronization overview Motivation Proposed solution Results

Feedback linearization in a nutshell

I have a nonlinear process x(k + 1) = f(x(k), u(k)).

I would like to make it a linear process with a “virtual input” v(k).
x(k + 1) = ax(k) + bv(k).

f(x(k), u(k)) = ax(k) + bv(k)

If I can solve for u(k) I can make a controller so that the
compound system with input v(k) and output x(k + 1) is linear.

This approach has been applied producing the FLOPSYNC-3
controller (details in the paper).

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 16/ 19



Clock synchronization overview Motivation Proposed solution Results

Feedback linearization in a nutshell

I have a nonlinear process x(k + 1) = f(x(k), u(k)).

I would like to make it a linear process with a “virtual input” v(k).
x(k + 1) = ax(k) + bv(k).

f(x(k), u(k)) = ax(k) + bv(k)

If I can solve for u(k) I can make a controller so that the
compound system with input v(k) and output x(k + 1) is linear.

This approach has been applied producing the FLOPSYNC-3
controller (details in the paper).

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 16/ 19



Clock synchronization overview Motivation Proposed solution Results

Feedback linearization in a nutshell

I have a nonlinear process x(k + 1) = f(x(k), u(k)).

I would like to make it a linear process with a “virtual input” v(k).
x(k + 1) = ax(k) + bv(k).

f(x(k), u(k)) = ax(k) + bv(k)

If I can solve for u(k) I can make a controller so that the
compound system with input v(k) and output x(k + 1) is linear.

This approach has been applied producing the FLOPSYNC-3
controller (details in the paper).

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 16/ 19



Clock synchronization overview Motivation Proposed solution Results

Feedback linearization in a nutshell

I have a nonlinear process x(k + 1) = f(x(k), u(k)).

I would like to make it a linear process with a “virtual input” v(k).
x(k + 1) = ax(k) + bv(k).

f(x(k), u(k)) = ax(k) + bv(k)

If I can solve for u(k) I can make a controller so that the
compound system with input v(k) and output x(k + 1) is linear.

This approach has been applied producing the FLOPSYNC-3
controller (details in the paper).

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 16/ 19



Clock synchronization overview Motivation Proposed solution Results

Feedback linearization in a nutshell

I have a nonlinear process x(k + 1) = f(x(k), u(k)).

I would like to make it a linear process with a “virtual input” v(k).
x(k + 1) = ax(k) + bv(k).

f(x(k), u(k)) = ax(k) + bv(k)

If I can solve for u(k) I can make a controller so that the
compound system with input v(k) and output x(k + 1) is linear.

This approach has been applied producing the FLOPSYNC-3
controller (details in the paper).

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 16/ 19



Clock synchronization overview Motivation Proposed solution Results

Simulation results

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 17/ 19



Clock synchronization overview Motivation Proposed solution Results

Implementation results

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 18/ 19



Clock synchronization overview Motivation Proposed solution Results

That’s all, but don’t forget to...

• Read the paper!

Lots of interesting details, including how to efficiently implement a
virtual clock.
https://re.public.polimi.it/handle/11311/1227829

Thanks for the attention, questions?

A. Sorrentino et.al. Efficient Abstraction of Clock Synchronization at the OS Level 19/ 19


	Clock synchronization overview
	

	Motivation
	

	Proposed solution
	

	Results
	


