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How does a real time (operating) system know time?
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How does a real time (operating) system know time?

int getTime ()

{

return TIM_CNT;

}

void setNextInterrupt(int t)

{

TIM_MATCH = t;

}
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Enter distributed real-time systems
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The effect of frequency error

Synchronization error between two oscillators that differ in
frequency by 50ppm, or 0.005%.
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Fixing the problem

Many approaches to clock synchronization.

• Master-slave: all nodes synchronize to a time reference

• Consensus-based: nodes synchronize among each other

• ...

In this presentation we focus on the master-slave case.
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Fixing the problem

We need three new actors

• A sensor, to measure our synchronization error

• An actuator, to correct our clock

• A clock synchronization algorithm
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Basic clock synchronization (no skew compensation)

Basic clock synchronization

• The sensor: clock synchronization packets from the master

• The actuator: overwriting the timer counter

• The clock synchronization algorithm: TPSN, DMTS, ...
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Basic clock synchronization (no skew compensation)

int getTime ()

{

return TIM_CNT;

}

void setNextInterrupt(int t)

{

TIM_MATCH = t;

}

void onClockSyncPacket(int timestamp)

{

TIM_CNT = syncAlgorithm(timestamp);

}
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Basic clock synchronization (no skew compensation)
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Advanced clock synchronization (with skew compensation)

Advanced clock synchronization

• The sensor: clock synchronization packets from the master

• The actuator: something that can change clock frequency ...

• The clock synchronization algorithm: FTSP, RBS, TATS,
FLOPSYNC-2 ...

How to change the clock frequency

• hardware approach: possible, but expensive

• software approach: virtual clock
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Advanced clock synchronization (with skew compensation)

float a;

int b;

int getTime ()

{

return a * TIM_CNT + b; // Virtual clock

}

void setNextInterrupt(int t)

{

TIM_MATCH = (t - b) / a;

}

void onClockSyncPacket(int timestamp)

{

int error = computeError(tiemstamp);

tie(a,b) = syncAlgorithm(error);

}
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Advanced clock synchronization (with skew compensation)

A virtual clock makes it possible to have a continuous/monotonic
clock, but a good sync algorithm is required.
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Motivation of this work

When adding a virtual clock to your codebase, you have two times

• Corrected time (virtual clock time)

• Uncorrected time (HW clock time)

From a software engineering perspective, uncorrected time is best
encapsulated.
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Motivation of this work

However, uncorrected timestamps are used by the sensor code that
measures clock synchronization error.

If the entire OS uses corrected time, the clock synchronization
algorithms sees the error corrected by the previous iteration of the
algorithm itself.

Formally, the model of the clock synchronization sensor becomes
nonlinear.
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Proposed solution

Make a control algorithm that can deal with the introduced
nonlinearity.

How? feedback linearization.
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Feedback linearization in a nutshell

I have a nonlinear process x(k + 1) = f(x(k), u(k)).

I would like to make it a linear process with a “virtual input” v(k).
x(k + 1) = ax(k) + bv(k).

f(x(k), u(k)) = ax(k) + bv(k)

If I can solve for u(k) I can make a controller so that the
compound system with input v(k) and output x(k + 1) is linear.

This approach has been applied producing the FLOPSYNC-3
controller (details in the paper).
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Simulation results
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Implementation results
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That’s all, but don’t forget to...

• Read the paper!

Lots of interesting details, including how to efficiently implement a
virtual clock.
https://re.public.polimi.it/handle/11311/1227829

Thanks for the attention, questions?
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